首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3132篇
  免费   84篇
  国内免费   119篇
  2023年   10篇
  2022年   20篇
  2021年   37篇
  2020年   25篇
  2019年   44篇
  2018年   57篇
  2017年   30篇
  2016年   35篇
  2015年   55篇
  2014年   129篇
  2013年   367篇
  2012年   92篇
  2011年   174篇
  2010年   80篇
  2009年   143篇
  2008年   140篇
  2007年   144篇
  2006年   140篇
  2005年   127篇
  2004年   132篇
  2003年   126篇
  2002年   115篇
  2001年   91篇
  2000年   55篇
  1999年   60篇
  1998年   93篇
  1997年   80篇
  1996年   70篇
  1995年   76篇
  1994年   79篇
  1993年   62篇
  1992年   58篇
  1991年   60篇
  1990年   47篇
  1989年   44篇
  1988年   38篇
  1987年   20篇
  1986年   20篇
  1985年   19篇
  1984年   35篇
  1983年   22篇
  1982年   25篇
  1981年   10篇
  1980年   9篇
  1979年   13篇
  1978年   7篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1974年   4篇
排序方式: 共有3335条查询结果,搜索用时 15 毫秒
1.
The effects of near ultraviolet (NUV) light on a NUV chromophore-containing oxidant-sensitive enzyme, dihydroxyacid dehydratase (DHAD), were measured in seven strains of Escherichia coli. The strains differed in production of the oxidant-defense enzymes, superoxide dismutases (Fe-SOD and Mn-SOD), and catalases HPI and HPII. With the stress of aerobic growth but without NUV exposure, the strains lacking either Fe or Mn SOD or both SODs had 57%, 25%, and 12%, respectively, of the DHAD-specific activity of the parent (K12) strain. Under the same conditions, the catalase strains that were wild type, overproducing, and deficient had comparable DHAD-specific activities. When aerobic cultures were exposed for 30 min to NUV with a fluence of 216 J/m2/s at 310–400 nm, the percentage decreases in DHAD-specific activities were similar (ranging from 75% to 89%) in strains with none, either, or both SODs missing, and in the catalase-overproducing strain. However, the decreases were only 58% and 52% in the strain with catalase missing and in its parent, respectively. The NUV-induced loss of DHAD enzyme activity was not accompanied by any detectable loss of the DHAD protein as measured by polyclonal antibody to DHAD.  相似文献   
2.
The cDNA sequences for Cu,Zn superoxide dismutase from two Cervus elaphus subspecies, North American wapiti and European red deer, were determined. The derived amino acid sequences showed two differences: residue 8 was Leu in wapiti and Met in red deer and residue 25 was His in wapiti and Asn in red deer. The extra positive charge at position 25 in the wapiti isoform accounted for its greater mobility towards the cathode during non-denaturing electrophoresis, a procedure widely used in the genetic analysis of deer. There was no difference in specific activity between the two Cu,Zn superoxide dismutase isoforms, but the wapiti isoform was slightly more susceptible to heat denaturation.  相似文献   
3.
The superoxide-dismutase-like activity of a series of divalent metal saccharinates of general stoichiometry [MII(Sac)2(H2O)4]·2H2O (with MII=Mn,Fe,Co,Ni,Cu,Zn) has been investigated using the nitroblue tetrazolium O 2 reduction assay. The results show that all these complexes possess the capability to dismutate the superoxide anion generated in the xanthine/xanthine oxidase system. Interestingly, the greatest activity is shown by the corresponding copper complex. The results are discussed and compared with those obtained for native superoxide dismutase, which was tested under the same experimental conditions. Dedicated to Prof. Pedro J. Aymonino on the occasion of his 65th birthday.  相似文献   
4.
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate‐tolerant and ‐non‐tolerant plants from uncontaminated and arsenic/copper‐contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate‐tolerant and ‐non‐tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non‐tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo‐enzymes. It was concluded that in non‐tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.  相似文献   
5.
《Free radical research》2013,47(1):287-296
A full understanding of enzyme-substrate interactions requires a detailed knowledge of their structural basis at atomic resolution. Crystallographic and biochemical data have been analyzed with coupled computational and computer graphic approaches to characterize the molecular basis for recognition of the superoxide anion substrate by Cu. Zn superoxide dismutase (SOD). Detailed analysis of the bovine SOD structure aligned with SOD sequences from 15 species provides new results concerning the significance and molecular basis for sequence conservation. Specific roles have been assigned for all 23 invariant residues and additional residues exhibiting functional equivalence. Sequence invariance is dominated by 15 residues that form the active site stcreochemistry. supporting a primary biological function of superoxide dismutation. Using data from crystallographic structures and site-directed mutants, we are testing the role of individual residues in the active site channel, including (in human SOD) Glu132, Glu133, Lys136, Thr137, and Arg 143. Electrostatic calculations incorporating molecular flexibility suggest that the region of positive electrostatic potential in and over the active site channel above the Cu ion sweeps through space during molecular motion to enhance the facilitated diffusion responsible for the enzyme's rapid catalytic rate.  相似文献   
6.
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH· formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing “biomarkers” of oxidative DNA damage are questioning the “antioxidant” roles of β-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.  相似文献   
7.
《Free radical research》2013,47(3):219-232
Abstract

This study aimed to evaluate whether natural or synthetic steroid hormones could directly modulate the activity of the different superoxide dismutase (SOD) isoforms found in human blood fractions without changing enzyme expression. Enzyme samples of human erythrocytes, the human platelet-rich plasma fraction (PRP) or isolated CuZnSOD, which was purified from human erythrocytes were pre-incubated with natural steroids (17β-estradiol 17-acetate and progesterone) and their synthetic derivatives (β-estradiol 3-benzoate and medroxyprogesterone 17-acetate). Then, CuZn and MnSOD activities were measured using the xanthine/xanthine oxidase/nitroblue tetrazolium method. Hormones had no effect on MnSOD activity from the PRP, but we show for the first time that natural and synthetic steroid hormones have a direct, bell-shaped effect on the activity of CuZnSOD from both male and female human erythrocytes. Low (physiological) hormone concentrations caused a dose-dependent increase in enzyme activity, which disappeared at higher hormone concentrations. In addition, the combination of synthetic and natural estrogens and progestins had a synergistic stimulatory effect on the activity of CuZnSOD from human erythrocytes. The molecular interaction between CuZnSOD and steroid hormones was preliminarily studied. Natural hormones did not change the electrophoretic mobility of SOD under denaturing conditions, but they did increase the absorption spectra of SOD in the 230–290 nm range. These data suggest that hormone-mediated modulation of CuZnSOD is related to subtle changes in protein conformation, possibly related to Trp and Phe residues. We propose that this effect may account for the physiological regulation of enzyme activity during conditions where steroid hormones undergo alterations as the ovulatory cycle.  相似文献   
8.
9.
Bilateral common carotid artery occlusion (15 min.) followed by two hours of recirculation reduced mitochondrial superoxide dismutase (SOD) and glutathione reductase (GR) activities, and increased susceptibility of mitochondrial membranes to in vitro lipid peroxidation in brain regions (i.e., cortex, striatum and hippocampus) of Mongolian gerbil. Intraperitoneal bolus injection (2 mg/kg b.w.) of liposome-entrapped CuZn superoxide dismutase (l-SOD) increased the endogenous SOD activity in normal brain tissue and, when given at the end of ischemia, counteracted both the ischemic reduction of endogenous SOD and the increased peroxidation of mitochondrial membranes. 1-SOD treatment was ineffective in reducing brain swelling, suggesting that superoxide radicals are not a main participant in the process of (post)ischemic brain edema formation.  相似文献   
10.
Superoxide dismutases (SOD; EC 1.15.1.1) in chestnut ( Castanea sativa Mill., cv. 431) leaves were characterized by native polyacrylamide gel electrophoresis. The three molecular forms of SOD were distinguished from each other by their different sensitivity to cyanide and H2O2 Three CuZn-containing SODs were detected (CuZn-SOD I, II. and III), and all the isozymes had a molecular mass of 33 kDa. CuZn-SOD III was the most abundant isozyme. whereas CuZn-SOD II was present in a minor amount. In leaves showing typical symptoms of senescence increases of 2.5-. 7- and 4-fold in the specific activities of CuZn-SODs I, II, and III. respectively, were found. In addition, the pattern of the three isozymes was modified by the age of leaves, a rise in the CuZn-SOD II and a decrease in the CuZn-SOD 1 percentages being found in senescent leaves compared to green leaves. As to other activated oxygen-related enzymes, an increase in the superoxide-generating xanthine oxidase activity and a decline in both catalase and peroxidase activities during natural senescence of chestnut leaves were observed. Results obtained suggest that in natural senescence of chestnut leaves activated oxygen species are involved, and an overproduction of hydrogen peroxide and superoxide radicals probably takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号